
CHAPTER IX.

GENERAL EQUATIONS OF THE ELECTROMAGNETIC FIELD.

604.] In our theoretical discussion of electrodynamics we began by 
assuming that a system of circuits carrying electric currents is a dynamical 
system, in which the currents may be regarded as velocities, and in which 
the coordinates corresponding to these velocities do not themselves 
appear in the equations. It follows from this that the kinetic energy of 
the system, in so far as it depends on the currents, is a homogeneous 
quadratic function of the currents, in which the coefficients depend 
only on the form and relative position of the circuits. Assuming these 
coefficients to be known, by experiment or otherwise, we deduced, by 
purely dynamical reasoning, the laws of the induction of currents, and 
of electromagnetic attraction. In this investigation we introduced the 
conceptions of the electrokinetic energy of a system of currents, of the 
electromagnetic momentum of a circuit, and of the mutual potential of 
two circuits.

604.1 We then proceeded to explore the field by means of various 
configurations of the secondary circuit, and were thus led to the concep­
tion of a vector A, having a determinate magnitude and direction at any 
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604. In our theoretical discussion of electrodynamics we began...: Maxwell’s “theo­
retical” discussion began with Chapter VI of Part IV. Earlier stages of the 
Treatise, in contrast, were devoted largely to the acquisition of electrodynamic 
concepts. In the first few Articles of this chapter Maxwell will review selected 
stages in the mathematical construction of the theory. 

a homogeneous quadratic function of the currents...: See, for example, (571.4).

purely dynamical reasoning : Here, fitting the general equations of Chapter V 
to the special conditions of electrical circuits and fields—as opposed to deducing 
consequences from hypotheses. The role of experiment differs dramatically in 
the two methods; Maxwell’s luminous characterization of the way experiment is 
to function in dynamical reasoning (592.2) will be amplified further in (606.) 
below.

604.1 the conception of a vector A : As Maxwell is about to remind us, he first 
introduced the vector A as the “vector potential of magnetic induction” in Art. 
405; he rediscovered it through dynamical investigation in (590.5)—but with a 
new significance, one related to momentum.



given point of the field. We called this vector the electromagnetic 
momentum at that point. This quantity may be considered as the time-
integral of the electromotive intensity which would be produced at that 
point by the sudden removal of all the currents from the field. It is 
identical with the quantity already investigated in Art. 405 as the vector-
potential of magnetic induction. Its components parallel to x , y , and z 
are F , G , and H. The electromagnetic momentum of a circuit is the line-
integral of A round the circuit.

604.2 We then, by means of Theorem IV, Art. 24, transformed the line-
integral of A into the surface-integral of another vector, B, whose 
components are a, b , c , and we found that the phenomena of induction 
due to motion of a conductor, and those of electromagnetic force, can 
be expressed in terms of B. We gave to B the name of the magnetic 
induction, since its properties are identical with those of the lines of 
magnetic induction as investigated by Faraday.

604.3 We also established three sets of equations: the first set, (A), are 
those of magnetic induction, expressing it in terms of the electromag­
netic momentum. The second set, (B), are those of electromotive 
intensity, expressing it in terms of the motion of the conductor across 
the lines of magnetic induction, and of the rate of variation of the 
electromagnetic momentum. The third set, (C), are the equations of 
electromagnetic force, expressing it in terms of the current and the 
magnetic induction.
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604.1, continued. We called this vector the electromagnetic momentum at that point : 
Although Maxwell does indeed use the term “electromagnetic momentum,” he 
called it the electrokinetic  momentum when he renamed vector A in (590.5). In 
general, Maxwell tends to apply the two terms interchangeably—as, for example, 
at (579.3)

the electromotive intensity which would be produced ... by the sudden removal of all 
the currents : Maxwell invoked such a thought experiment in (590.5). That it 
indeed indicates “something like momentum” is what he observed, in the name 
of Faraday, at (551.3). Compare his discussion of the role of sudden stoppage  in 
the operation of the hydraulic ram in Art. 547.

The electromagnetic momentum ... is the line-integral of A round the circuit : 
Maxwell developed the line-integral of A in Art. 405; he identified the electro­
magnetic (or electrokinetic) momentum of a circuit in a different form at 
(578.6).

604.3 We also established three sets of equations : Equations (A) were set forth in 
(591.5), equations (B) in (598.4), equations (C) in (603.1). They make up the 
first three of a total of twelve sets of General Equations of the Electromagnetic 
Field expounded in the present chapter. 



604.4 The current in all these cases is to be understood as the actual 
current, which includes not only the current of conduction, but the cur­
rent due to variation of the electric displacement.

604.5 The magnetic induction B is the quantity which we have already 
considered in Art. 400. In an unmagnetized body it is identical with the 
force on a unit magnetic pole, but if the body is magnetized, either per­
manently or by induction, it is the force which would be exerted on a 
unit pole, if placed in a narrow crevasse in the body, the walls of which 
are perpendicular to the direction of magnetization. The components 
of B are a, b, c.

604.6 It follows from the equations (A), by which a , b, c  are defined, that 

da
dx
+

db
dy
+

dc
dz
= 0.

604.7 This was shewn at Art. 403 to be a property of the magnetic 
induction.

605.] We have defined the magnetic force within a magnet, as distin­
guished from the magnetic induction, to be the force on a unit pole 
placed in a narrow crevasse cut parallel to the direction of magnetization. 
This quantity is denoted by H, and its components by α, β, γ. See Art. 398.
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604.4 the actual current, which includes not only ... conduction, but ... displacement : 
Maxwell writes here as though he had already introduced the term “actual cur­
rent” in the sense described. He indeed used that locution in (578.3); but since 
the discussion there was limited to electrical circuits  (which are formed of con­
ductors rather than dielectrics), no significant displacement could arise. Later 
in the present chapter, Arts. 610 and 611, Maxwell will use the term “true 
current” to denote the sum of conduction and displacement currents; but the 
present passage marks his first explicit mention of their summation.

604.6 It follows from equations (A) ... that  da
dx
+

db
dy
+

dc
dz
= 0 :  Equations (A) were 

given in (591.5) as a =
dH
dy
−

dG
dz

, b =
dF
dz
−

dH
dx

, c =
dG
dx
−

dF
dy

.  Take the derivatives 

da/dx and db/dy ; the terms in H  cancel one another; similarly, the terms in F 
and G  cancel pairwise when dc/dz  is also taken. We performed a similar trans­
formation in (24.2, comment ).

This is actually an instance of a general theorem. Since a , b, c  are the com-

ponents of B, we recognize 
da
dx
+

db
dy
+

dc
dz

 as ∇•B, the divergence of B (25.9, 

comment ). Likewise F, G , H  being the components of A (590.2), equations (A) 
are equivalent to B=∇×A or B= curl A (591.5, comment ); thus we have 
shown that div curl A= 0. It will be evident that, by the same method, we can 
prove that the divergence of the curl of any  vector is identically zero.



605.1 If I is the intensity of magnetization, and A , B, C its compo­
nents, then, by Art. 400,

	

a =α+4πA,

b = β+4πB,

c = γ+4πC .

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪    

(Equations of Magnetization)	 (D)

605.2 We may call these the equations of magnetization, and they indi­
cate that in the electromagnetic system the magnetic induction B, con­
sidered as a vector, is the sum, in the Hamiltonian sense, of two vectors, 
the magnetic force H, and the magnetization I multiplied by 4π, or

B= H+4πI.
In certain substances, the magnetization depends on the magnetic 
force, and this is expressed by the system of equations of induced mag­
netism given at Arts. 426 and 435.

606.] Up to this point of our investigation we have deduced every­
thing from purely dynamical considerations, without any reference to 
quantitative experiments in electricity or magnetism. The only use we 
have made of experimental knowledge is to recognise, in the abstract 
quantities deduced from the theory, the concrete quantities discovered 
by experiment, and to denote them by names which indicate their 
physical relations rather than their mathematical generation.

606.1 In this way we have pointed out the existence of the electromag­
netic momentum A as a vector whose direction and magnitude vary from 
one part of space to another, and from this we have deduced, by a mathe­
matical process, the magnetic induction, B, as a derived vector. We have 
not, however, obtained any data for determining either A or B from the 
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605.2 the sum, in the Hamiltonian sense : that is, the vector sum, 
the result of joining the tail of one vector to the head of the 
other, as indicated in the drawing.

606. to recognize, in the abstract quantities deduced from theory, the concrete quantities 
discovered by experiment : with its emphasis on “recognizing,” this beautiful char­
acterization makes it clear that experiment, for Maxwell, advances a doubly 
interpretive activity. By relating abstract mathematical quantities to experience 
we, first, enrich our experience with meaning and wholeness. Second, we 
ground  our mathematical and symbolic knowledge, bestowing upon it a human 
face that Faraday, above all, would surely have prized: recall Maxwell’s remark 
that “Faraday ... saw lines of force traversing all space where the mathematicians 
saw centres of force attracting at a distance” (Preface, paragraph 0.21).

denote them by names which indicate their physical relations rather than their mathe
matical generation : An expression of Maxwell’s distaste for what Daniel M. Siegel 
has called “disembodied mathematics” in his richly rewarding study Innovation in 
Maxwell’s Electromagnetic Theory, Cambridge University Press (1991), p. 31. 



distribution of currents in the field. For this purpose we must find the 
mathematical connexion between these quantities and the currents. 

606.2 We begin by admitting the existence of permanent magnets, the 
mutual action of which satisfies the principle of the conservation of 
energy. We make no assumption with respect to the laws of magnetic 
force except that which follows from this principle, namely, that the 
force acting on a magnetic pole must be capable of being derived from 
a potential.

606.3 We then observe the action between currents and magnets, and 
we find that a current acts on a magnet in a manner apparently the same 
as another magnet would act if its strength, form, and position were 
properly adjusted, and that the magnet acts on the current in the same 
way as another current. These observations need not be supposed to be 
accompanied by actual measurements of the forces. They are not there­
fore to be considered as furnishing numerical data, but are useful only 
in suggesting questions for our consideration.

606.4 The question these observations suggest is, whether the mag­
netic field produced by electric currents, as it is similar to that produced 
by permanent magnets in many respects, resembles it also in being 
related to a potential?

606.5 The evidence that an electric circuit produces, in the space sur­
rounding it, magnetic effects precisely the same as those produced by a 
magnetic shell bounded by the circuit, has been stated in Arts. 482–485.

606.6 We know that in the case of the magnetic shell there is a poten­
tial, which has a determinate value for all points outside the substance 
of the shell, but that the values of the potential at two neighbouring 
points, on opposite sides of the shell, differ by a finite quantity.

606.7 If the magnetic field in the neighbourhood of an electric current 
resembles that in the neighbourhood of a magnetic shell, the magnetic 
potential, as found by a line-integration of the magnetic force, will be 
the same for any two lines of integration, provided one of these lines can 
be transformed into the other by continuous motion without cutting the 
electric current.
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606.2 the force acting on a magnetic pole must be capable of being derived from a poten-
tial : Maxwell introduced derivation from a potential generally in (16.4–16.5). For 
the magnetic case see (395.1) and (398.1, comment ).

606.3 They are not ... to be considered as furnishing numerical data, but [as] sug-
gesting questions : He continues to point out the interpretive role of experiment.

606.6 the values of the potential ... differ by a finite quantity : We saw this in (411.).

606.7 the magnetic potential ... will be the same for any two lines of integration, pro-
vided one of these lines can be transformed into the other...: Maxwell introduced this 
idea in (481.), but not so explicitly as he states it here. See also (607.2) below.



606.8 If, however, one line of integration cannot be transformed into 
the other without cutting the current, the line-integral of the magnetic 
force along the one line will differ from that along the other by a quan­
tity depending on the strength of the current. The magnetic potential 
due to an electric current is therefore a function having an infinite series 
of values with a common difference, the particular value depending on 
the course of the line of integration. Within the substance of the con­
ductor, there is no such thing as a magnetic potential.

607.] Assuming that the magnetic action of a current has a magnetic 
potential of this kind, we proceed to express this result mathematically.

607.1 In the first place, the line-integral of the magnetic force round 
any closed curve is zero, provided the closed curve does not surround 
the electric current.

607.2 In the next place, if the current passes once, and only once, 
through the closed curve in the positive direction, the line-integral has a 
determinate value, which may be used as a measure of the strength of the 
current. For if the closed curve alters its form in any continuous manner 
without cutting the current, the line-integral will remain the same.

607.3 In electromagnetic measure, the line-integral of the magnetic 
force round a closed curve is numerically equal to the current through 
the closed curve multiplied by 4π.

607.4 If we take for the closed curve the rectangle whose sides are dy and 
dz, the line-integral of the magnetic force round the parallelogram is

dγ
dy
−

dβ
dz

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
dydz ,

418	 Part IV. Electromagnetism

606.8 Within ... the conductor, there is no such thing as a magnetic potential : 
Maxwell voiced an equivalent restriction in (485.1).

607.1 the line-integral of the magnetic force round any closed curve is zero, provided 
the closed curve does not surround the electric current : as stated earlier in (498.3).

607.3 the line-integral of the magnetic force round a closed curve is numerically equal 
to the current through the closed curve multiplied by 4π: To consider a simple case, 
the magnetic force H at distance r  from a long straight wire carrying current i 
is disposed circularly about the wire and has magnitude T= 2i/r , as stated at 
(477.1) and proved in (485.3, comment ). For a circular path of radius r , the line-
integral of H will be 2πr  . 2i/r  = 4πi . 

607.4 the line-integral of the magnetic force round the parallelogram : The drawing 
shows the parallelogram in question. I discussed a nearly 
identical case in the editor’s introduction to Art. 24, sec­
tion 2, on page 38 above. Proceeding in the same way, after 
collecting terms we shall find the line-integral equal to 
dγdz−dβdy. Divide and multiply by dy dz  to obtain Maxwell’s 
expression. 



and if u, v, w are the components of the flow of electricity, the current 
through the parallelogram is u dy dz .

607.5 Multiplying this by 4π, and equating the result to the line-
integral, we obtain the equation

4πu =
dγ
dy
−

dβ
dz

,

with the similar equations

4πv =
dα
dz
−

dγ
dx

,

4πw =
dβ
dx
−

dα
dy

,

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

(Equations of

Electric Currents)
	 (E)

which determine the magnitude and direction of the electric currents 
when the magnetic force at every point is given.

607.6 When there is no current, these equations are equivalent to the 
condition that 
	 αdx+βdy+γdz =−DΩ,

or that the magnetic force is derivable from a magnetic potential in all 
points of the field where there are no currents.
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the current through the parallelogram is  udydz : Strictly, u , v , and w  are the 
components of the current density—current per unit cross section area. Only the 
component u  is perpendicular to the yz -plane; thus the current through area 
dydz  is udydz .

607.5 Equations of Electric Currents  (E): Note that the right-hand sides of the 
equations together constitute curl H or ∇×H ; see Art. 25, especially (25.11 and 
comment). For α, β, γ are the components of H (605.), while ∇ was defined as

i
d
dx
+ j

d
dy
+ k

d
dz

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
. Then ∇×H= i

d
dx
+ j

d
dy
+ k

d
dz

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
× iα+ jβ+ kγ( ).  Multi- 

plying through, ∇×H= i
dγ
dy
−

dβ
dz

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
+ j

dα
dz
−

dγ
dx

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟+ k

dβ
dx
−

dα
dy

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
.  Since u, v, w 

have been identified as the components of current C (603.2, 603.3), equa­
tions (E) may therefore be expressed in vector form as: 4πC=∇×H .

607.6 When there is no current, ... αdx +βdy +γdz =−DΩ: D  is Maxwell’s symbol 
for an exact differential, introduced in (16.3). Then since α, β, γ are the com­
ponents of H, the equation is equivalent to H =−∇Ω; that is, H is the negative 
gradient of Ω, which is therefore a potential  (17.–17.4 and 17.5, comment ). Now 
we just showed that equations (E) may be expressed as 4πC=∇×H ; thus “when 
there is no current” they reduce to ∇×H = 0 or curl H = 0. But this will be 
identically true only if there is some scalar quantity Ω such that H =−∇Ω; for 
you can easily prove that the curl of the gradient of any scalar quantity is zero. 
Thus “the magnetic force is derivable from a potential,” Ω, wherever there are 
no currents.



607.7 By differentiating the equations (E) with respect to x, y, and z 
respectively, and adding the results, we obtain the equation

du
dx
+

dv
dy
+

dw
dz
= 0,

which indicates that the current whose components are u , v , w  is subject 
to the condition of motion of an incompressible fluid, and that it must 
necessarily flow in closed circuits.

607.8 This equation is true only if we take u , v , and w  as the compo­
nents of that electric flow which is due to the variation of electric 
displacement as well as to true conduction.

607.9 We have very little experimental evidence relating to the direct 
electromagnetic action of currents due to the variation of electric dis­
placement in dielectrics, but the extreme difficulty of reconciling the laws 
of electromagnetism with the existence of electric currents which are not 
closed is one reason among many why we must admit the existence of 
transient currents due to the variation of displacement. Their importance 
will be seen when we come to the electromagnetic theory of light.

608.] We have now determined the relations of the principal quanti­
ties concerned in the phenomena discovered by Örsted, Ampère, and 
Faraday. To connect these with the phenomena described in the former 
parts of this treatise, some additional relations are necessary.
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607.7 By differentiating the equations (E) ... : Recall that Maxwell performed a 
similar transformation on equations (A) in (604.6). Here, equations (E) can be 
expressed as 4πC=∇×H ; taking the divergence (∇•) of both sides, we imme­
diately deduce that ∇•C= 0, since the divergence of (∇×H) must be zero 
(604.6, comment ). And, as before, we recognize (du/dx + dv/dy + dw/dz ) as 
equivalent  to ∇•C .

the current whose components are u, v, w  ... must necessarily flow in closed 
circuits : Otherwise stated, it has the solenoidal property (21.7 and comment ).

607.8 true only if we take u, v, w as ... due to the variation of electric displacement as 
well as to true conduction : As we have noted already, the conduction current 
considered in itself is not in every case solenoidal. When charging a capacitor, 
for example, if we recognize only  the conduction current, we shall say that elec­
tricity accumulates on the plates—a violation of the solenoidal condition (21.7). 
But when we also take the variation of displacement into account, we understand 
that electricity does not accumulate anywhere, not even on the plates (61.).

607.9 the extreme difficulty of reconciling the laws of electromagnetism with ... electric 
currents that are not closed : We can find a signal example in equations (E), 
expressed in vector form as 4πC = curl H  (607.7, comment ). As before, since the 
divergence of curl H  is identically zero, the divergence of C must also be zero; 
but div C will not be zero at the plates of a charging capacitor, like the one con­
sidered in the previous comment—unless we admit the existence of something 
equivalent to a current in the space between the plates.

the electromagnetic theory of light : to be put forward in Chapter XX.



608.1 When electromotive intensity acts on a material body, it pro­
duces in it two electrical effects, called by Faraday Induction and 
Conduction, the first being most conspicuous in dielectrics, and the 
second in conductors.

608.2 In this treatise, static electric induction is measured by what we 
have called the electric displacement, a directed quantity or vector 
which we have denoted by D, and its components by f , g , h.

608.3 In isotropic substances, the displacement is in the same direc­
tion as the electromotive intensity which produces it, and is propor­
tional to it, at least for small values of this intensity. This may be 
expressed by the equation

D=
1

4π
KE,    (Equation of Electric 

Displacement)
	 (F)

where K is the dielectric capacity of the substance. See Art. 68.
608.4 In substances which are not isotropic, the components f , g , h  of 

the electric displacement D are linear functions of the components P, 
Q , R  of the electromotive intensity E.

608.5 The form of the equations of electric displacement is similar to 
that of the equations of conduction as given in Art. 298. 

608.6 These relations may be expressed by saying that K  is, in isotropic 
bodies, a scalar quantity, but in other bodies it is a linear and vector func­
tion, operating on the vector E.

609.] The other effect of electromotive intensity is conduction. The 
laws of conduction as the result of electromotive intensity were estab­
lished by Ohm, and are explained in the second part of this treatise, 
Art. 241. They may be summed up in the equation

K = C E,  (Equation of Conductivity)	 (G)
where E is the electromotive intensity at the point, K is the density of the 
current of conduction, the components of which are p, q,  and r, and C 
is the conductivity of the substance, which in the case of isotropic sub­
stances, is a simple scalar quantity, but in other substances becomes a 
linear and vector function operating on the vector E. The form of this 
function is given in Cartesian coordinates in Art. 298.

610.] One of the chief peculiarities of this treatise is the doctrine 
which it asserts, that the true electric current C, that on which the elec­
tromagnetic phenomena depend, is not the same thing as K, the current 
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608.5 the equations of conduction ... given in Art. 298 : The Article is not included 
in the present selections, but Maxwell’s point is that displacement and conduc­
tion can be viewed in comparable terms mathematically.

609. K is the density of the current of conduction : that is, current per unit cross-
section area of the conductor.



of conduction, but that the time-variation of D, the electric displace­
ment, must be taken into account in estimating the total movement of 
electricity, so that we must write,

C=K+ D, (Equation of True Currents)  	 (H)
or, in terms of the components,

	

u = p+
df
dt

,

v = q+
dg
dt

,

w = r +
dh
dt

.

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪

 	 (H*)

611.] Since both K and D depend on the electromotive intensity E, 
we may express the true current C in terms of the electromotive inten­
sity, thus

	 C= C +
1

4π
K

d
dt

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟E, 	 (I)

or, in the case in which C and K are constants,

	

u =CP +
1

4π
K

dP
dt

,

v =CQ +
1

4π
K

dQ
dt

,

w =CR +
1

4π
K

dR
dt

.

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪

 	 (I*)

612.] The volume-density of the free electricity at any point is found 
from the components of electric displacement by the equation

	
ρ=

df
dx
+

dg
dy
+

dh
dz

. 	 ( J)
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612. free electricity : Something of a figure of speech inherited from conventional 
fluid-flow thinking, the term was used in Art. 36 to denote electricity that is 
“free” to participate in conduction. It was there distinguished from “combined” 
or “bound” electricity, which undergoes displacement under the action of elec­
tromotive force but returns to its former condition as soon as that force is 
removed (60.2). But it is misleading to think in terms of kinds  of electricities, 
or to think of any  electricity as being free of force; Maxwell’s discussions of 
conduction and induction have made it quite clear that the essential distinction 
is rather between forces of tension that easily break down (in a conductor) and 
those which endure (in a dielectric).

Equation ( J ): It is a variant of Poisson’s equation (77.3). Since f , g , h  are the 
components of displacement D, it can also be expressed as div D=ρ or, alter­
natively, as ∇•D=ρ (77.2, comment).
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613.] The surface-density of electricity is

	 σ= lf +mg +nh+ ′l ′f + ′m ′g + ′n ′h ,  	  (K)
where l, m, n are the direction-cosines of the normal drawn from the 
surface into the medium in which f, g , h are the components of the 
displacement, and l ′, m ′, n ′ are those of the normal drawn from the 
surface into the medium in which they are f ′, g ′, h ′. 

614.] When the magnetization of the medium is entirely induced by 
the magnetic force acting on it, we may write the equation of induced 
magnetization,
	 B=µH,  	 (L)
where μ is the coefficient of magnetic permeability, which may be con­
sidered a scalar quantity, or a linear and vector function operating on H, 
according as the medium is isotropic or not.

615.] These may be regarded as the principal relations among the quan­
tities we have been considering. They may be combined so as to eliminate 
some of these quantities, but our object at present is not to obtain compact­
ness in the mathematical formulae, but to express every relation of which 
we have any knowledge. To eliminate a quantity which expresses a useful 
idea would be rather a loss than a gain in this stage of our enquiry.

613. the direction-cosines of the normal drawn from the surface into the medium : 
Equation (K) gives the charge per unit area that develops on a surface between 
two different media in the presence of electric displacement. Since the normals 
are drawn away from the surface into their respective media, 
they are in opposite directions and their direction-cosines 
have opposite signs. The products l ′f ′ and l f  will similarly 
have opposite signs. The sketch shows a boundary between 
two media; the positive x -direction is to the right. Since the 
net displacement in the direction of the normal, l f−l ′f ′, is 
directed to the left, the surface-density σ will be negative.

614. B= μH : Even though Maxwell has had the materials for writing this rela­
tion of magnetic proportionality since Part III Chapter IV, he has not done so 
until now, where it follows closely upon the electrical proportionality D= 1__

4πKE 
(608.3). Is he inviting us to notice a parallelism between these relations? 
Certainly a formal correspondence is obvious. But physically, magnetism and 
electricity seem very far from being parallel. The nonexistence of isolated 
magnetic poles is a major point of difference; the lack of anything like a mag­
netic “current” is another.

615. to express every relation of which we have any knowledge : What impulse drives 
us to shape truth into speech? While it can have its comical side—“When I 
think, I must speak!” (Rosalind in As You Like It, Act III)—yet there is something 
quite wonderful about it, worthy even of the heavens: The heavens declare the 
glory of God , and the firmament proclaims his handiwork. Day unto day utters speech, 
and night unto night expresses knowledge (Psalm 19).


